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ABSTRACT

The experiments conducted in nuclear physics laboratories often

require the design of fast-pulse amplifiers. Recent transistors offer

new capabilities in this field. The work presented here centers on the

design of such amplifiers by the sampled-parameter technique, in which

the transistor is characterized by two-port parameters measured at a set

of frequencies through the frequency band of interest. The feedback and

coupling networks are selected by computations based on these sampled

parameters. An application of this technique has led to an iterative

stage using a 2N918 transistor and having the following characteristics:

1. Iterative impedance ................................ 50 ohms

2. Insertion power gain ............................... 10 db

3. Bandwidth ......................................... 400 Mc

4. Rise time .......................................... 1 nsec

5. Overshoot ........................................ < 10 percent

6. Noise factor (throughout the band) ............... 8-10 db

7. Output level, negative pulse ..................... -500 mv

8. Output level, positive pulse ..................... 200 mv

An amplifier of three such stages, cascaded, provided a gain of 30 db,

a rise time of 1 nsec, and a bandwidth of 400 Mc.
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I. INTAODUCTION

A. PULSE AMPLIFIERS IN NUCLEAR PHYSICS

Experiments in high-energy physics have made necessary, in recent

years, the design of amplifiers for faster and faster pulses. Such

amplifiers are placed at the output of photomultipliers (Fig. 1) in

order to drive a coincidence circuit, or, in some other experiments,

the coincidence circuit is placed at the output of the photomultiplier

while the pulse amplifier is supposed to realize the pulse shaping and

the pulse amplifying before the signal goes to the scaler.

B. RECENT ADVANCES IN TRANSISTOR TECHNOLOGY

Until recently, only the vacuum tube could give a rise time of ap-

proximately 1 nsec. Recent advances in the transistor field make it

possible for transistors to replace tubes advantageously. Some transis-

tors with a maximum oscillation frequency greater than 2 Gc are now com-

mercially available. Because of their small size, one can place, for

some experiments, up to 10 or 12 transistor amplifiers very close to

the scintillators, thus avoiding carrying a low-level signal along a

100-yard cable from the target area tothe measurements area. Moreover,

some recent work seems to indicate that the transistor behavior remains

satisfactory even if it has been submitted to nuclear radiations for a

"reasonable" length of time.

The above remarks explain why the electronics engineers in nuclear

physics laboratories have been so deeply interested, among other things,

in the design of wideband transistor amplifiers.

C. CONTINUOUS-WAVE RESPONSE AND PULSE RESPONSE

As is generally the case, this study was more concerned with band-

width than pulse response. The reason for this is that it is very dif-

ficult to establish a link between desired output pulse characteristics

and the location of transfer-function poles and zeros. Once the band-

width is attained, the phase response can be modified by using an all-

pass phase equalizer, as discussed by Fogarty [Ref. 1], or by modifying

- 1 - SEL-63-121
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FIG. 1. ELECTRONIC APPARATUS FOR A NUCLEAR-PHYSICS EXPERIMENT.
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the bandwidth experimentally. In the case of the 400-Mc, 1-nsec ampli-

fier, it was not necessary to rely on these techniques, since the pulse

overshoot (< 10 percent) was small enough for the intended application.

D. SOME RECENT ACHIEVEMENTS

Many pulse-amplifier designs are to be found in the literature.

Some of the most notable results and the references reporting them are

indicated below:

Reference Transistor Power Gain Bandwidth
Number (db/stage) (Mc)

2 M 2039 10 130
Western

Electric

fT = 400 Mc

3 2N917 6 2 nsec
Fairchild rise time

fT = 800 Mc

4M 2107 6 750
Western

Electric
fT = 2 Gc

5M 2058 7 200
Western

Electric
fT = 550 Mc

E. TWO DIFFERENT POSSIBLE APPROACHES TO THE PROBLEM

Two main ways of approaching the problem are considered:

1. The transistor is represented by a model including R's, C's, and
controlled sources. An attempt is made to determine the emitter
current, the load and source impedances which give the maximum
gain-bandwidth product, and the values of the associated circuit
elements which correspond to a prescribed location for the poles
of the transfer function (generally the "maximally flat" location).

2. The transistor is represented by a set of sampled matrix parameters,
actually measured at a given value of emitter current. This pro-
cedure is J. G. Linvill's sampled-parameter method, the basic ideas
of which are developed in Transistors and Active Circuits, by Lin-
vill and Gibbons [Ref. 6].
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The first method has the advantage of representing a physical system

with a model: it allows a mathematical analysis and the associated cir-

cuit synthesis through the conventional techniques of network synthesis.

It is also true, however, that this approach is only as good as the model,

and generally raises the question of whether to use a simple model of

limited validity or a more complex model requiring more complicated com-

putations.

In the second approach the limitations on the validity of the tran-

sistor model pose no problem because one is operating directly on the

measured transistor parameters. (See Fig. 2.) On the other hand, a

set of matrix parameters can hardly be used as a guide in the choice of

the type of associated circuits. It thus appears that good results may

be achieved by combining the two approaches.

Linvill's method consists in "roughing out" the problem with a very

simple equivalent circuit. This first step leads to an appropriate cir-

cuit configuration and gives orders of magnitude for the gain and the

bandwidth. A further step, using the sampled parameters, leads to more

precise values.

APPROXIMATION

TRNITRTRANSISTOX PARAMETERS ASSOCIATED CIRCUITS

MEASUREMENTS CALCULATIONS

FIG. 2. TWO DIFFERENT APPROACHES TO THE DESIGN OF WIDEBAND AMPLIFIERS.
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II. LINVILL'S IM CHART

A. THE LM PLANE

The two-port parameters and terminal variables are related as follows:

I, = yljEj + Y12E2  ()

12 = Y21 E1 + y22E2  (2)

It is convenient to consider a unit driving voltage:

El = 1 + jO (3a)

The output voltage E2 can be conveniently defined in terms of

variables L and M in the following way. Moreover, the load admit-

tance is found to be related to L and M.

E2 = (L+ jM)- -= -I (3b)

2y22r YL

B. THE Po(L,M) PARABOLOID AND THE Pi(L,M) PLANE

The output power

PO = Re (-E*2I 2 ) = L - (L2 + M2)Iy, 1 2 (4)2y22r 4Y22r

PO(L,M) is a paraboloid, and the coordinates of its summit are (1,0)

where Po is designated as Po0o.

Poo = jy12(5)
4y22r

* The problem of selecting (by the sampled-parameter technique) source
and load terminations of amplifiers to provide a realizable prescribed gain

is discussed in Chapters 11, 18, and 19 of Transistors and Active Circuits

[Ref. 6]. The reader is referred to that reference for background and de-
tails. The framework and notation of the reference is outlined in this

section because subsequent development in this report extends the method.
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The input power

Pi = Re E1*I = Y11r + L Re Y + M Im Y- 1 (6)
2Y22r 2y22r

Pi (L,M) is an inclined plane. Its gradient line makes an angle 8

with the L axis such that

e = - arg (-Y12Y21) (7)

When L = 1 and M = 0, Pi = Pio = 2 yjjr Y2vr- Re (Y12Y21) (8)2 Y22r

The coordinates L = 1, M = 0 correspond to

YL = Y 2 Pi = Pi0 PO = Poo (9)

The two-port is potentially unstable when (Poo/Pio) < 0, or when the

critical factor

C = 2Po > (10)Pio I~

Moreover, when C < 1, the maximum available gain (Y. = in and YL =Y )

is never larger than 2(Poo/Pio).

C. THE LOAD ADMITTANCE (YL) IN THE LM PLANE

The load admittance is found to be

Y = Y22 + 2r 2yl)

L = L + jM

and G + jB is defined in the following way:

+ Y22 = 2y22r = G + jB (12)YL + Y22 =

Thus a load admittance YL is determined by any one of three sets of co-

ordinates-- (YLr'yLi), (L,M), or (G,B), and we can draw in the IM

plane the constant G and the constant B circles. The chart thus ob-

tained (Fig. 3) is a very simplified version of Linvill's chart but it

contains all the elements which will be needed for the particular pur-

pose of this discussion.
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IN

B -. Y22,,_ L

G 2Y22 r  G 
=  

1.0Y22 r

S +l,0Y22r + 
=  

0. y2

2
Y22r

YL * Y22 -17,- G * jB

FIG. 3. LOAD ADMITTANCE IN THE IM PLANE.

D. THE CONSTANT-g CIRCLES

From the charts shown in Fig. 4 two new axes, x and y, are chosen

such that their origin lies at L = 1, M = 0, and such that their angles

with the L axis are e and e + (n/2).

The locus of points for which g = (Po/PoO)/(Pi/PiO) is constant is

a circle:

1 - g(1 + CX) =x2 + y2 (13)

The circles which correspond to different values of g have two

points in common if C > 1 (Fig. 4a), and no point in common if C < 1

(Fig. 4b).
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III. THE R-L COLLECTOR-TO-BASE FEEDBACK

The first step in the design of a broadband amplifier can now be

undertaken. With a given transistora simple equivalent circuit will be

used in order to determine approximately the power gain per stage, the

bandwidth, and the elements of the electrical circuits.

A. AN EQUIVALENT CIRCUIT FOR THE 2N918 TRANSISTOR

The 2N918, which is used in the broadband amplifier, is a Fairchild

NPN silicon, planar epitaxial, double-diffused transistor. (Total max-

imum power dissipation = 200 mw at 25 °C ambient, VCBO = 30 v, and

IC  = 50 ma.) Table 1 lists the sampled y parameters of thisCmax

transistor as they can be inferred from the Fairchild data sheet of

May, 1962. (The lO-Mc parameters have been added.)

TABLE 1. SAMPLED y PARAMETERS OF THE FAIRCHILD 2N918 TRANSISTOR

(IE = 5 ma, VCE = 10.0 v)

f Parameter (mmho)

(Mc) Y Y31 y 21 y 22

10 1.7 + j0.65 -0.01 - jO.07 See Footnote 0.08 + jO.13

50 2.5 + j2.5 0.00 - jO.3 80.0 - j60.O 0.1 + jl.O

100 5.0 + j5.0 0.00 - jO.7 40.0 - j60.O 0.2 + jl.3

200 8.0 + j8.0 0.00 - jl.3 25.0 - j55.0 0.5 + j2.5

300 10.0 + jlO.O -0.1 - j2.0 15.0 - j47.0 0.6 + j3.5

400 12.0 + j12.0 -0.2 - j2.7 7.0 - j43.0 0.8 + j4.5

500 17.0 + j14.0 -0.4 - j3.4 0.0 - j40.O 1.0 + J6.0

gm = 100.0 + j40.0 at 10 Mc.

Reading this table makes an important fact apparent: While

y (f) is approximately a linear function of frequency, y (f) isi2i 12r

approximately a parabolic function. This fact suggests that a a equiv-

alent circuit (Fig. 5) can be used, the feedback admittance being an

rc-Cc series circuit with rcCcW < 1.

- 9 - SEL-63-121



jCe,

g rc Cc C Y12 1 + Jrcc,

Y2 Y22 + Y12

0 VBE 21

FIG. 5. A w EQUIVALENT CIRCUIT FOR ThE 2N918 TRANSISTOR.

For such a circuit the following expression can be written:

jCcW

-12 -+ jrc~w ' rcC c 2 + jCcw (14)

By comparison of the above expression with the parameters in Table 1,

one can calculate that:

cc = 1 pf rc = 30 ohms (15)

At a very low frequency (f = 10 Mc), the transistor can be represented

by the circuit shown in Fig. 6.

At high frequencies, the transistor can be represented by the circuit

in Fig. 7, in which

y= Y + jyli = y + y (16)Yi ir ii 11 1

y = y + jy = y + y (17)
2 2r 21 22 12

and gm is complex. The parameters y r and y2r can be computed from

Table 1 in Sec. IIIA. The parameters yli and y21 need not be calcu-

lated since they do not influence the value of (Po0/Pi0).
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Y* y IC

E

yIr 1. 7 ewho

go100 + A0~ waho

a. The equivalent circuit at 10 Mc

J 1. 7 who YK

b. The equivalent circuit with feedback
at 10 M4C

25 dt

P

YF ("uho)

c. Power gain p vs Y at 10 Mc

FIG. 6. TRANSISTOR MODEL FOR A FREQUENCY OF 10 Mc.
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cc  .0 pf

B C

Ylr j yY2r y2i

g,¥

a. An equivalent circuit for the 2N918 transistor without
external feedback

RF LF

C
B

Cc

lr Y2r YL Y22

b. Tuning Cc by means of external feedback

B V8  C

~F R F2 CYlr YF Y2r
YL Y2r + YF

E

c. Resultant equivalent circuit at amplifier cutoff
frequency ,c

FIG. 7. TRANSISTOR MODEL FOR HIGH FREQUENCIES.
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B. THE INFLUENCE OF COLLECTOR-TO-BASE FEEDBACK

The influence of feedback at a low frequency (lOMc) is considered

first. In the circuit of Fig. 6b, YK is the load conductance. (At low

frequencies the characteristic admittance YK = the load admittance YL-)

YF is the feedback conductance (1 < YF < 10 mmho), and P(YK, YF) is the

power gain of the stage (Fig. 6b). Choosing, for example, YK = 20 mmho,

we can plot P(YF) as shown in Fig. 6c.

It can be seen that when the stage is loaded with 50 ohms, a 200-ohm

feedback resistor from collector to base will reduce the gain to 10 db,

while the input impedance will come close to 50 ohms. Thus it seems

feasible (at least at low frequencies) to design a 50-ohm iterative stage.

The maximum bandwidth which can be expected is determined next. From

the equivalent circuit shown in Fig. 7, the values of y1r and y2r for

frequencies between 200 and 500 Mc are obtained (see Table 2).

TABLE 2. VALUES OF y r AND y2r FOR THE 2N918 TRANSISTOR

Parameter Frequency (Mc)

(mmho) 200 300 400 500

Yr 8 10 12 17

Y2r 0.5 0.5 0.6 0.6

Now Cc =1 pf is tuned with an RF- LF series circuit (RF = 200 ohms),

and YL is chosen such that YL = Y 2 (Fig. 7b). The stage power gain now

nears the maximum value that can be expected with a given RF (determined

by the low-frequency requirements). To calculate this maximum value,

note that Cc, RF, and LF make a resonant circuit which can be replaced
by a conductance RFCc2, wc being the cutoff frequency of the amplifier

to be determined. This conductance does not modify y21 appreciably, but

it does modify y22 and y 11 Moreover, within the frequency range of 200

to 500 Mc, y 2 -j40, the "Miller effect" does not modify Yin r' and
21

thus the conductance RFCc 2 can be removed and merely placed in parallel

with y2r and with y1r (Fig. 7c).

- 13 - SEL-63-121



Table 3 contains the results of calculating

Y'I = Y + YF (18)
ir ir

Y'I = Y + YF (19)
2r 2r

and the corresponding value of (Poo/Pio), YL having been chosen such

that YL =  2r

P00 = Y21 12 400

PF 4y y -2Re(y y ) y ,(0
jo ilr 22r 12 21 ) r 2r

TABLE 3. COMPUTED VALUES OF Ylr ' Yr AND Po /P

Parameter Frequecy (Mc)

200 300 400 500

y (mmho) 8.3 10.8 13.2 19lr

y' (mmho) 0.8 1.3 1.8 2.6
2r

Poo (db) 18 14.5 12 9P ioI 
I

From the above table it is seen that a l0-db power gain up to about

400 Mc can be expected. For this cutoff frequency, the tuning induct-

ance LF = 160 nh and the input impedance is approximately 76 ohms.

(y' = 13.2 mmho). When used in a 50-ohm system the power loss resulting
ir

from mismatch at the input would be less than 0.2 db, provided that an

appropriate output coupling is designed.

Thus, a very simple equivalent circuit has provided orders of mag-

nitude for RF (200 ohms), LF (160 nh), for the gain-bandwidth product

(1200 Mc), and for the characteristic impedance (50 ohms). But it is

still not known what the frequency response will be between f = 0 and

f = 400 Mc. For a given transistor and feedback network, the response

will depend mainly on the interstage filter. However, for a given inter-

stage filter, it is possible to vary the frequency response by modifying

the feedback circuit.

SEL-63-121 - 14 -



The following observations can be made on the basis of what has al-

ready been learned from the equivalent circuit.

1. A frequency-response curve similar to that represented in Fig. 8a
can be smoothed with two inductors in the feedback circuit, one
being a ferrite coil and the other an air coil (Fig. 8b). While
the air coil tunes Cc at 400 Mc, the ferrite coil tunes Cc at
a lower frequency f1 , the material being chosen such that the
corresponding inductance is negligible at 400 Mc.

2. A frequency-response curve similar to that represented in Fig. 8c
can be smoothed with a parallel damping resistor RD.

The foregoing ideas based on the transistor equivalent circuit were

not developed mathematically. Qualitative considerations of those ideas,

however, were very helpful during the experimental step of our procedure.

C. THE CONSTANT-(PoO/Pio) CIRCLES

The second step in the computations will lead to more precise values

for LF, RF, the maximum gain-bandwidth product, and to the design of

the interstage two-port.

Consider again the expression for (PoO/Pio) [Ref. 6, p. 248]:

-00 Y j 1 (21)Po 0  j j

P 4y y - 2 Re(y y
llr 22r 12 21

In this relation, [y] is the matrix of a two-port which is shunted by

an RF-LF circuit (Fig. 9). That is,

[y] = [YTl + [YF ]  (22)

1 F (231
where Y = YF YF23)

1

and YF - jL F 
= F + OF (24)

- 15 - SEL-63-121



POWER GAIN

itRF LF
IfI

cc(a) '400 Mc f

RF 1F 1F2
then can give

cc (b) fb

F LFI LF 2

If givyes

I1 f

cc (c) f

then IIF
FLFLF can give

RD(d) 400 Mc

cc

FIG. 8. FREQUENCY RESPONSE CONSIDERING COLLECTOR-TO-BASE FEEDBACK ONLY.
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Thus,

P00  _ 21T - gF - JbF 1 2

'io 4 ( y rT+gF) (y 2 2 rT+gF) - 2 Re (y12T -yF) (y 21T-yF

(y2 1rTgF)2 
+ (y2liTbF)

2

4(y llT+g F)(y22r'rF) - 2 ((Y12rTgF)(YrT-gF) - (Y21T-bF )(y21iT-bF))

(25)

R F  LF

- I RANSIS3TOR- :I -

[yl = [yT'J + [YF]

FIG. 9. MATRIX OF A TRANSISTOR SHUNTED BY AN RFL F CIRCUIT.

For a given value of (Poo/Pio) = p, the above relation is the equation

of a circle. This fact suggests a simple method of determining RF,

LF, and p. Consider, on a Smith chart (Fig. 10), the constant RF

circles. For each of these values of RF (Fig. 6c), there is one value

for p (low-frequency power gain with a given value of Y K)" The con-

stant (Po/Pio) circles can be drawn on the same chart. For a given

desired power gain p, RF must be simultaneously on the two corres-

ponding circles. Figure 10 clearly shows that the highest value for p

corresponds to two tangent circles and that any lower value will lead to

two values for RF (and LT).

Thus, for a given value of YK, knowledge of the y parameters at a

very low frequency f0  and the y parameters at any other frequency

f leads, in a straightforward way, to an estimation of the maximum

power gain (within 3 db) which can be expected from a video amplifier

having a bandwidth B = f - fo, and to knowledge of the RF- L feedback

circuit.
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FIG. 10. SUPERPOSITION OF THE CONSTANT LOW-FREQUENCY AND HIGH-FREQUENCY

POWER-GAIN CIRCLES. In this illustration the highest value for the
power gain, p max' corresponds to the two tangent circles for which
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IV. DETERMINATION OF YL(f) AND THE INTERSTAGE NETWORK

A. THE MAPPING OF YL: CONSTANT-p CIRCLES AND CONSTANT-p CIRCLES

At this point, RF  and LF are known, and for a required bandwidth

B, the maximum power gain p which can be expected with a given load

admittance YL = YK is also known. The transistor with its feedback

circuit now behaves like a new transistor, characterized by y para-

meters for a set of sampled frequencies. The following question shall

now be answered. How can the interstage filter be designed in order to

achieve, in the band B (Fig. 11), a constant input admittance Yin = YK,

and a constant power gain p 7

INPUT POWER pi(f) OUTPUT POWER Pom

TRANS ISTOR INTERSTABE

Yinput + FILTER
FEEDBACK YK

YL

FIG. 11. BLOCK DIAGRAM OF THE COMPLETE AMPLIFIER STAGE. The general
requirements are that Yinput = YK and Po/Pi = p.

1. The Input-Admittance Requirement

An arbitrary value po is chosen for the input reflection co-

efficient, and the new requirement on the input admittance Yin is

formulated by stating that, for any frequency, the input admittance of

the amplifier must lie on a Smith chart, inside the constant po circle.

But it is known that Yin is related to YL in the following way:

-Z (26)
L =  

2 2  Yin-y 1

Thus, two circles that correspond to each other can be drawn on two

separate Smith charts (Fig. 12), one for the input admittance and one

- 19 - SEL-63-121
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inpLoa admittance chart. The shaded region i the locus of Yin
for any input reflection coefficient .0
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for the load admittance. For any load admittance inside the right shaded

circle, the transistor will present an input reflection coefficient less

than po

2. The Power-Gain Requirement

It is specified that within the band B, the stage power gain

must not differ from p by more than Ap. That is,

p - Ap stage power gain g p + Ap

But it is known that on the iX plane, and consequently on a Smith chart

(Fig. 13), the load admittances YL that provide power gains p - Ap

and p + Ap are located on two circles. The load admittances that pro-

vide power gains between those two values are to be found between those

two circles.

If both the input-admittance requirement and the power-gain re-

quirement are to be taken into account simultaneously, YL must be chosen

inside the region that belongs to the two regions just specified. This

region will be the permissible region for YL at a frequency f (Fig. 14).

Proceeding in the same way for each sampled frequency leads to as

many permissible regions as there are sampled frequencies. These regions

will be drawn on a single Smith chart (Fig. 15), or more effectively, on

two superimposed reversed Smith charts, as shown in Fig. 20. (See also

Chapter 14 of Ref. 6.)

B. THE INTERSTAGE NETWORK

The interstage network (Fig. 11) transforms YK into YL(f). A

ladder type, nondissipative filter will be chosen. Usually a single A

(or a T) section will give satisfactory results (Fig. 16). Although

some advanced mathematical methods are available for the design of such

a ladder [Ref. 6, Chap. 141, experience shows that a few trials on the

Smith chart will bring the input admittances at the different frequencies

inside the corresponding permissible regions. Finally one arrives at

the stage represented in Fig. 17. It will be found later that, for the

400-Mc amplifier, the interstage filter can be reduced to a single in-

ductor. The design and realization of such an amplifier will be consid-

ered in the next chapter.
- 21 - SEL-63-1l2



II

a. LM Plane

P -jBSI

00.

b. Smith chart

FIG. 13. THE POWER-GAIN REQUIREMENTS. The shaded regions are the loci
of power gains between p - 1p and p + Ap.
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p -L

-0.

P L0

FIG. 14. THE PERMISSIBLE REGION FOR YL AT A GIVEN FREQUENCY. To meet
the requirements on both power gain and input admittance, YL must be
located in the shaded region.

o7

il-0.

FIG. 15. THE PERMISSIBLE REGIONS FOR YL FOR SEVERAL FREQUENCIES. The
interstage network transforms YK into Y(f) such that for the

sampled frequencies fI, f2' f3d f4;''', Y Ls image on the chart
comes into the corresponding shaded region.
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FIG. 16. THE INTERSTAGE NETWORK.

FIG. 17. AN ITERATIVE SINGLE-STAGE AMPLIFIER.
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V. A 400-Mc, 30-db TRANSISTOR AMPLIFIER

A. THE STEP-BY-STEP PROCEDURE

The step-by-step procedure leading to the design of a 400-Mc, 30-db

transistor amplifier is now presented.

1. The 2N918 y Parameters

In Table 4 the sampled y parameters of the 2N918 transistor

are restated for reference purposes.

TABLE 4. RESTATEMENT OF THE SAMPLED PARAMETERS OF THE
2N918 TRANSISTOR, [YT]f)

(IE = 5 ma, VCE = 10 v)

Frequency Parameter (mmho)

(Mc) Y 11 Y 1Y21 Y22

10 1.7 + jO.65 -0.01 - jO.07 See Footnote 0.08 + jO.13

50 2.5 + j2.5 0.0 - jO.3 80 - j60 0.1 + jl

100 5 + j5 0.0 - jO.7 40 - j60 0.2 + jl.3

200 8 + j8 0.0 - jl.3 25 - J55 0.5 + j2.5

300 10 + jlO -0.1 - j2 15 - j47 0.6 + j3.5

400 12 + j12 -0.2 - j2.7 7 - j43 0.8 + j4.5

500 17 + j14 -0.4 - j3.4 0.0- j40 1 + j6

Sh 21 = 62.5 at 10 Mc.

2. Determining the Feedback Circuit

Figure 18 contains, in the YF plane, the constant power-gain

circles for YK = 20 mmho and for a very low frequency (10 Mc). These

circles correspond to p = 9, 10, 11 and 12 db. Also contained in the

YF plane are the constant (Po0 /Pio) circles for f = 400 Mc. Consider-

ing the intersections of these circles, it is seen that p = 11 db could

be chosen, but since the transistor y parameters specified in Table 4

are merely typical parameters, p is chosen to be 10 db. It is to be

noted further that in Fig. 18 there are two intersections of the l0-db
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circles, thus yielding two solutions for the normalized feedback impedance:

ZF norm 0.7 + J5.0

and (27)

ZF norm 0.7 + jO.5

o9

F F  -40F

RF = 4 om!(9

F!9 d
FIG. 18. THE Y. PLANE (NORMALIZED TO 5 mmho). YK 20 inmho; f =400 Mc;

11 db < pm < 12 db. Choosing p = 10 db gives KZ F = 0.7 + j0.5 or

Z F = 0.7 T'15.0.

In order to preserve midband gain, ZF norm = 0.7 + j5.0 is chosen.

ZF = (0.7 + J5.0) x 200 = 140 + J1000 ohms (28)

RF = 140 ohms 
(9

LF = 0.4 ph

The feedback admittance YF(f) is calculated from the foregoing values

for RF and LF  , and the results are listed in Table 5.
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TABLE 5. VARIATION OF YF. WITH FREQUENCY

Parameter Feuny(c
50 100 2003040

YF(norm)* O.8-JO.7 O.35-JO.6 O.l-JO.37 O.05-jO.25 O.03-JO.2

YF(mmho) 14 -j3.5 1.75-j3.0 O.5-jl.85 O.25-jl.25 0.15-jl.0

Normalized to 5 mmho.

3. The Constant-g Circles

The y parameters of the transistor with its feedback circuit

connected (Table 6) can now be determined.

TABLE 6. THE y PARAMETERS OF THE TIRANS ISTOR WITH
FEEDBACK CIRCUIT CONNECTED

[y](f) = tYT](f) + [YFI(f)

Frequency Parameter (mmho)

(Mc) y y 12y 21y2

10--------

50 6.5 - jl.0 -4.0 + j3.2 76 - j57 4.1 - j2.5

100 6.75 + j2.0 -1.75 + j2.3 38 - j57 2.0 - jl.7

200 8.5 + J6.15 -0.5 + jO.6 25 - j53 1.0 + jO.65

300 10.3 + J8.8 -0.35 - 30.75 15 - J46 0.9 +~ j2.3

400 12.2 + jil -0.35 - jl.7 7 - j42 1.0 + j3.5

On the LMd plane, the constant-g circles for f = 100, 200, 300, and

400 Mc are plotted in Fig. 19 using the following relationships:

X2 + y2 =l1-_g(14+-Cx) (30)

= (P 0 /Pi) p 
(1

6g = o(2

oor(32)

In the present situation, p = 10 (10 db) and Ap = 1 db.
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0. f. 100Me, C-2; 9.Th

b. 112OMe.. 0-2.6; 890o

jJM

TOISR 1 SAN TLAT 0bA

10d CIRCLE.

FIG. 19. THE CONSTANT-g CIRCLES.

4. The Constant-p Circles

With p = 1/3, the insertion power loss is less than 0.5 db.

The constant-p circles and the constant-g circles are plotted in Fig. 20,

using Smith-chart coordinates for YL

SEL-63-121 - 28-



a2a

;rt

29 SEL63-12



5. The Interstage Network

A few investigations lead to the two-port shown in Fig. 21.*

The input admittance of this two-port, when loaded with YK falls into

the regions determined in Fig. 20.

60 nh

0.8 Pf j 50 ohms

FIG. 21. THE INTERSTAGE NETWORK
FOR THE 400-Mc AMPLIFIER.

B. BRIDGE MEASUREMENTS

After arriving at design values for the individual circuit elements,

the following bridge measurements are made: *-

1. Measurements of the transistor y parameters,

2. Measurements of the y parameters of the transistor with feedback
circuit connected, adjusting the feedback circuit so that the
parameters approach the design values as closely as possible, and

3. Measurements of the y parameters of the complete stage, consisting
of transistor, feedback circuit, and interstage network. During
these measurements the interstage inductor can be adjusted so that
the y parameters of the complete circuit correspond to an iterative
structure with a characteristic impedance of 50 ohms and an in-
sertion gain of 10 db.

For an extensive discussion of the design of coupling networks, see
Chap. 14 of Transistors and Active Circuits, by Linvill and Gibbons[Ref.61

A General Radio 1607-A Transfer-Function and Immittance Bridge was used
for these measurements during the realization of the 400-Mc amplifier
described in this report.
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During the course of these measurements and adjustments, it is helpful

to keep in mind the fact that, at high frequencies, the circuit elements

behave like distributed rather than lumped elements.

C. PRACTICAL DATA

A detailed schematic circuit of the 400-Mc amplifier realized by

the foregoing methods is shown in Fig. 22. Slight adjustments of the

emitter currents were used to improve the response shape. In order to

permit transistor interchangeability, voltage and current adjustments

were provided for each stage.

Figure 23 is a photograph of the amplifier. Shields were used be-

tween stages, each emitter was grounded with a very short connection,

and each transistor case was grounded. Stand-off insulators and transis-

tor sockets were avoided, except for a teflon stand-off insulator used

at the base of the input transistor The base leads of the second and

third transistors were connected directly to 50-ohm bulkhead female

microconnectors in order to permit optional independent connection to

any one of the individual stages.

D. FINAL SUMMARY OF AMPLIFIER PERFORMANCE

Figures 24 through 31 summarize the performance of the 400-Mc ampli-

fier. From these figures it can be seen that the three-stage amplifier

has a gain of 30 db, a rise time of 1 nsec, and an overshoot of less than

10 percent.

The three original transistors were replaced by three others. Slight

modifications of the emitter currents made it possible to regain the

original amplifier characteristics, the adjustment process being rapidly

"convergent" when carried out using a sweep-frequency generator. Although

such a single trial cannot be considered conclusive, it indicates that the

amplifier might be reproducible on a production basis.

- 31 - SEL-63-121



L F - cLF CF LFI CF

RI

RF RD LF R L F2 RF
R RD LF2

LI LF LF Li C~
IC2C 12 2T 3

R8  RC R R8 j ) RCI R B RC I

C FT CFT CFT CFT CFT CFT

IV 0 K..C HF" HIGII-FRKQIJEKIC RITORS D.0K, 1

RD~ ~ ~ ~ ~~f - ... HR IH-RQECYRSSOR,20OHS 
/ K

RF-IR loxF" IHFRQEC REIS ORS 150 OHS /

CB - 0.01 A CERMI ISC-FCAPUCITORSISOS -K /

RC - 0.01 f CEFRMI DISC CAPACITRSISOS .K /

RFD - CERAMC "FEDTHROGHFRQ C CAPACITO RS , 275 0 OHS,1/

FIG7 UNS. 2.W SHEDATICNE CIRCUIT LOFG THE21 INSIDE DAMELIER.

SE -6 -1 2 TUN 32. 20-GSLDTNE IEI ELNSEEEWUDO EEA EAISTR



FIG. 23. PHOTOGRAPH OF THE 400-Mc AMPLIFIER.
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I flsec/cm --- a

a. Input step

C4'

I nsec/cm -

b. Output step for amplifier plus IO-db attenuator.

FIG. 25. STEP RESPONSE OF THE SINGLE-STAGE AMPLIFIER.
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U

U

C

5 nsec/cm *---P

a. Positive output

S

0
0

5 nsec/cm
b. Negative output

FIG. 27. DYNAMIC RANGE OF THE SINGLE-STAGE AMPLIFIER. Input pulse

varied in 3-db increments in both (a) and (b).
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I nsec/cm -

a. Input step

-U
t

Insec/cm -

b. Output step for amplifier plus 30-db attenuator

FIG. 29. STEP RESPONSE OF THE THREE-STAGE AMPLIFIER.
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in

5 nsec/cm-*

a.Positive Output Pulse for 8 values of input pulse
differing in amplitude by 3 db

5 nsec/Cm -

b. Negative output pulse for 11 values of input pulse
differing in amplitude by 3 db

FIG. 31. DYNAMIC RANGE OF THE THREE-STAGE AMPLIFIER.
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